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Validation of an Adaptive Combustion Instability Control 
Method for Gas-Turbine Engines 

George Kopasakis, John C. DeLaat, and Clarence T. Chang 
National Aeronautics and Space Administration 

 Glenn Research Center 
 Cleveland, Ohio 44135 

This paper describes ongoing testing of an adaptive control method to suppress high 
frequency thermo-acoustic instabilities like those found in lean-burning, low emission 
combustors that are being developed for future aircraft gas turbine engines. The method 
called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental 
rig designed to simulate a combustor with an instability of about 530 Hz. Results published 
earlier, and briefly presented here, demonstrated that this method was effective in 
suppressing the instability. Because this test rig did not exhibit a well pronounced instability, 
a question remained regarding the effectiveness of the control methodology when applied to 
a more coherent instability. To answer this question, a modified combustor rig was 
assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig 
exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 
315 Hz. Test results show that this control method successfully reduced the instability 
pressure of the lower frequency test rig.  In addition, due to a certain phenomena discovered 
and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the 
instability was achieved by focusing control on the second harmonic of the instability. These 
results and their implications are discussed, as well as a hypothesis describing the 
mechanism of intra-harmonic coupling. 

 
 
 

 

Figure 1.—Test Rig for Aircraft Gas-Turbine Engine Combustion Instability Research at NASA GRC. 
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I. Introduction 
LEAN-burning, low emission combustors are being investigated for aircraft gas turbine engines.  Lean 

combustion is shown to be advantageous for reducing NOx emissions and enhancing turbine temperature 
distribution and efficiency; but is also more prone to thermo-acoustic instabilities. These instabilities are typically 
the result of the coupling of the fluctuating heat release1 (of the combustion process) with the lightly damped 
acoustics of the combustion chamber. The exact mechanism involved in this coupling is not well understood and 
different hypotheses as to its precise nature exist.2 

Suppression of the thermo-acoustic instability has been attempted through active control.3 The goal of these 
active control efforts is to reduce the energy concentrated at the instability frequency and to reduce the overall 
amplitude of the combustor pressure oscillations.  Some active control concepts involved speaker actuation4,5,6,7,8,9,10 

and others involve fuel modulation.11,12,13,14,15 Fuel modulation is more applicable to aero-type engines. But even the 
latter techniques have shown limited success in suppressing the frequency spectra of low frequency instabilities, and 
even less success in suppressing the time domain pressure fluctuations. 

Combustor instability suppression presents a challenging problem for controls design due primarily to large 
dead-time phase delay (of many hundreds of degrees or more) and noise in the combustion process.  Besides large 
phase delay and noise, there are other characteristics of combustor instabilities which could play an important role in 
control design.2,16 The Adaptive Sliding Phasor Averaged Control (ASPAC) methodology was first applied to 
control a High Frequency Rig Configuration (HFRC) during tests conducted in 2002 at United Technologies 
Research Center (UTRC). The results presented in Ref. 17 demonstrated the effectiveness of the methodology in 
reducing the frequency spectra of the combustor pressure. This represented the first known control demonstration of 
actively controlled, high frequency, thermo-acoustic instabilities in a realistic aero-engine (gas-turbine) combustor 
rig.17,18 

This year, control was attempted on the Low Frequency Rig Configuration (LFRC) that was assembled at NASA 
Glenn Research Center (GRC) to further test and verify the control methodology. As will be shown later, the LFRC 
exhibited a strong coherent instability compared to the HFRC. The actual aero-engine exhibited instability with 
coherence somewhere between the LFRC and the HFRC. The controller was successful in suppressing the low 
frequency, coherent instability. However, the level of suppression at the fundamental frequency was less than 
expected based on the experience gained from application of the control to the HFRC. This will also be discussed as 
there seems to be other factors that influence the control of coherent instabilities.  

In analyzing the control test results with the HFRC, it was hypothesized that there seems to exist some sort of 
inertia that promotes amplification of the instability during instability flare-ups, even though the controller 
modulation opposes this action.17 Later, an analysis of the coherence showed that a dynamic coupling seemed to 
exist between the instability and its harmonics.2 Based on this result, the controller design for the LFRC was altered 
to also control the second and the third harmonics of the instability.  In so doing it was possible to determine 
whether additional suppression of the instability was possible, as the analysis seemed to indicate. The test results 
demonstrated not only that additional suppression was possible by controlling the second harmonic, but the results 
were unexpectedly dramatic. In fact, focusing the control on the second harmonic produced large suppressions, 
which may be possible even with simplified or unsophisticated control designs. A preliminary hypothesis will be 
offered as to why controlling the harmonic has such a pronounced effect on suppressing the instability. This 
hypothesis, that will be discussed in detail later, deals with wave coupling asymmetry.    

This paper is organized as follows:  A description of the combustor rig is given, followed by a brief description 
of the control methodology. Then test results for the HFRC and the LFRC are presented. These are followed by a 
discussion about harmonic control and its implications. Finally, further insights are presented on possible causes for 
these coupling dynamics. 

II. Combustion Instability Rig 
In order to focus control development toward realistic combustor instabilities in aeronautics, a combustor rig 

that replicates an aero engine combustor instability has been designed and fabricated.19,20 A picture of the rig is 
shown in Figure 1 and a corresponding schematic in Fig. 2. The sample problem selected for this rig is a combustion 
instability that was observed during the development of a high-performance aircraft gas-turbine engine. The 
frequency of the observed instability in the developmental engine was about 525 Hz and the magnitude of the 
pressure oscillations was sufficient to cause unacceptable vibratory stresses in the turbine. 

The combustor rig successfully replicates the observed real-world engine instability and operates at engine 
pressure and temperature conditions.  This is a single-nozzle combustor rig, which has many of the complexities of 
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the actual engine combustor including a state-of-the-art 
engine fuel nozzle and swirler, dilution cooling, and an 
effusion-cooled liner. 

Conditions corresponding to a mid-power engine 
condition were chosen for evaluation (T3=770 °F, P3=200 
psia, fuel-air ratio = 0.03). Test results established the 
existence of a combustion instability at approximately 533 
Hz.  Figure 2 shows the test rig apparatus for the 533 Hz, 
high frequency configuration. The LFRC is obtained by 
removing the diffuser section in Fig. 2 and placing it 
before the two ¼ wave spool section. This has the effect of 
elongating the wavelength by ~ 19 in and produces an 
instability at 315 Hz. 

A comparison between the pressure spectrum in the 
actual engine and in the single-nozzle combustor rig at 
comparable operating conditions for the HFRC and LFRC is 
shown in Figs. 3 and 4 respectively. This comparison shows 
that in terms of instability frequency, the HFRC closely 
simulates the actual engine instability. In terms of instability 
coherence for the fundamental, however, the engine more 
closely resembles the behavior of the LFRC. These two rig 
configurations provide essentially two control problems.  
The HFRC provides a high frequency, low signal-to-noise 
instability problem, and the LFRC provides a lower-
frequency, high-amplitude, high signal-to-noise problem.   

This single nozzle research combustor rig was developed 
in partnership with Pratt & Whitney and UTRC.  The first 
experimental testing with the HFRC took place at UTRC, 
and the more recent control testing with the LFRC took 
place at NASA GRC. 

III. Description of ASPAC Algorithm and 
Modifications 

The ASPAC algorithm is described in detail in Refs. 17 
and 21. In essence the algorithm calculates a restricted 
control phase region in a stationary reference frame; an 
approach that is favorable for instability suppression. The 
combustor instability pressure is sensed using a band-pass 
filter in order to isolate the instability frequency. The 
sensed pressure is phase shifted, with a phase that slides 
back and forth inside a restricted control region. This phase 
shifted pressure is used to generate a command to the fuel 
valve, which produces pressure oscillations in the 
combustor that oppose the instability pressure.  

The controller command is generated at a 10 KHz rate 
and the controller calculates and applies a new phase shift at a rate of 40 Hz. Also, this controller optionally employs 
discontinuous exponential gain modulation control. In this control mode the gain toggles on and off with an 
exponential decay in order to counteract the effective proportional gain variability produced by the large dead time 
phase delay of the plant. In addition, controller parameter adaptation is employed to tune some of the key parameters 
of the controller. 

The combustor instability feedback control diagram is shown in Fig. 5. The flame, acoustics, and the nonlinearity 
loop generates the self excited instability. The pressure oscillations generated by combustion of the controller 
modulated fuel are opposing in phase the pressure oscillations generated by the instability, reducing the net 
amplitude of the instability. 
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Figure 4.—Pressure Spectra and Time Domain 
for Low Frequency Rig Configuration (LFRC). 

 
Figure 3.—Pressure Spectra Comparison of 
Engine (Mid-Power) and Baseline High 
Frequency Rig Configuration (HFRC). 

DiffuserDiffuser

 
Figure 2.—Combustion Instability Test Rig Configuration. 
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The analysis of the test results for the HFRC17 revealed that during instability control some sort of instability 
inertia, or a self-reinforcing mechanism, seemed to exist that went beyond the effects of the large dead time phase 
delay.17 In Ref. 2 this affect was further analyzed and through a coherence plot it was observed that strong coherence 
existed between the fundamental and its harmonics. This type of effect, even though its exact nature remained 
unknown, was called Intra-Harmonic Coupling. This result suggested that additional suppression of the instability 
was possible by also controlling higher order harmonics of the instability. Based on this analysis, the control design 
for the LFRC was modified from the controller version used for the HFRC in order to verify whether additional 
suppression was possible through harmonic control. Modifications provided for simultaneous control of the first 
three harmonics of the instability or any combination thereof. Figure 5 shows the control diagram for the modified 
controller, which includes the adaptive phase control and algorithm for parameter adaptation.  A concern with this 
approach is whether the fuel valve would have the high frequency authority required to control the third harmonic of 
the instability.  
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Figure 6.—Overall Combustion Instability Control Block Diagram with Modifications for Harmonic 
Control. 

Phase Shift
Controller

Fuel Valve
Fuel lines, Injector

& Combustion
Σ

Acoustics
Non-

linearity

Flame

White Noise

+
+

+

Filter

Combustor PressurePhase Shift
Controller

Fuel Valve
Fuel lines, Injector

& Combustion
Σ

Acoustics
Non-

linearity

Flame

White Noise

+
+

+

Filter

Combustor Pressure

Gv

NL
AG

FG
Phase Shift
Controller

Fuel Valve
Fuel lines, Injector

& Combustion
Σ

Acoustics
Non-

linearity

Flame

White Noise

+
+

+

Filter

Combustor PressurePhase Shift
Controller

Fuel Valve
Fuel lines, Injector

& Combustion
Σ

Acoustics
Non-

linearity

Flame

White Noise

+
+

+

Filter

Combustor Pressure

Gv

NL
AG

FG

ASPACPhase Shift
Controller

Fuel Valve
Fuel lines, Injector

& Combustion
Σ

Acoustics
Non-

linearity

Flame

White Noise

+
+

+

Filter

Combustor PressurePhase Shift
Controller

Fuel Valve
Fuel lines, Injector

& Combustion
Σ

Acoustics
Non-

linearity

Flame

White Noise

+
+

+

Filter

Combustor Pressure

Gv

NL
AG

FG
Phase Shift
Controller

Fuel Valve
Fuel lines, Injector

& Combustion
Σ

Acoustics
Non-

linearity

Flame

White Noise

+
+

+

Filter

Combustor PressurePhase Shift
Controller

Fuel Valve
Fuel lines, Injector

& Combustion
Σ

Acoustics
Non-

linearity

Flame

White Noise

+
+

+

Filter

Combustor Pressure

Gv

NL
AG

FG

ASPAC

 
Figure 5.—Combustion Instability Control Block Diagram. 
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IV. Test of ASPAC Algorithm and 
Modifications 

This section discusses the test results of the ASPAC 
control methodology. Two separate sets of tests were 
conducted over the last couple years to validate the 
methodology. The first set of tests was carried out on 
the HFRC at UTRC during June and September of 
2002. The most recent tests were performed on the 
LFRC at NASA GRC during the beginning of June 
2004. The HFRC instability suppression test results 
will be described here only in brief, since these results 
have already been reported in Ref. 17. 

A. HFRC Test Results 
A typical test result17 using the control algorithm for 

the HFRC is shown in Fig. 7. In these tests the 
controller successfully suppressed the instability to 
near the noise floor. In terms of time domain 
reductions, the instability amplitude in the HFRC is 
small compared to the overall wideband noise  
(~1/7th the noise amplitude) and no apparent reductions 
were visible in the time domain. For the instability of 
the HFRC, which was not very coherent compared to 
the actual engine instability (Fig. 3) the noise floor 
seemed to impose a lower limit on how far down the 
instability could be suppressed.  

B. LFRC Test Results Focused on the Fundamental 
Initially control tests focused only on controlling the 

fundamental frequency of the instability  
(~315 Hz), before initiating control at the harmonics. 
Besides verifying whether controlling the harmonics 
would improve instability suppression, the original 
objective remained (i.e., to demonstrate control on a 
more coherent instability like the one experienced with 
the actual aero engine).  Figure 8 shows a typical 
frequency response of the controlled instability. A 
comparison with results from the uncontrolled 
instability in Fig. 4 shows that the instability amplitude spectra were suppressed by almost a factor of 10.  The time 
domain combustor pressures, along with the control fuel modulation command (REFAcmd) in volts are also shown 
Fig. 8.  Prior open-loop testing showed the fuel modulation command causes a modulation pressure in the combustor 
of approximately 1 psi/volt up to about 350 Hz, and drops off significantly above this frequency.  The control fuel 
modulation required, as shown in Fig. 8, is only about a third of the maximum available (+-3V).   

Given the large dead time phase delay experienced in combustor instability control it was conjectured that 
combustor noise was the primary limitation of how far down the instability could be suppressed. While noise 
appears to be the dominant limiting factor for suppression of less coherent instabilities like the HFRC, in general 
noise doesn’t seem to be the only dominant factor. In Section V, a hypothesis will be offered to try to explain this 
additional mechanism involving instability dynamic behavior and control. 

C. LFRC Test Results Focused on the Second Harmonic 
During the same test run, controller action was focused on the second harmonic. During the test, it became 

apparent that the instability fundamental not only responded to the second harmonic control, but the suppression of 
the fundamental was more drastic than with just the fundamental control (Fig. 9). The scale in Fig. 9 is the same as 
Fig. 4 for direct comparison.  The peak instability pressure in this amplitude spectra plot is 0.7 psi. Comparing this 
result to the uncontrolled instability of Fig. 4 there is ~ 20 times or 26 dB of instability suppression with  
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Figure 8.—Pressure Spectra and Time Domain of 
Controlled Instability (PLA1C1psi) and Control 
Command (REFAcmd) for Control Focus on the 
Fundamental. 

 
Figure 7.—HFRC, Amplitude Spectral Density of 
Uncontrolled vs Controlled Instability using Original 
ASPAC Method. 
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this control. In the time domain, the peak-to-peak 
pressure fluctuation is reduced from approximately 30 
psi to less than 10 psi. The corresponding control 
command for this controlled combustor pressure is 
shown in Fig. 10. Open-loop fuel modulation testing had 
shown that during a frequency sweep, the combustor 
pressure response to the fuel modulations was barely 
noticeable above the noise  floor at 600 Hz. Therefore, 
relatively little control authority at the second harmonic 
was needed to suppress the instability. 

Another control test focusing on the second 
harmonic is shown in Fig. 11. This result, in terms of the 
peak amplitude spectra, is better than the result shown in 
Fig. 9 (0.39 vs 0.7 psi). This represents about 35 times 
or 31 dB attenuation of the instability. The reason for 
the improved controller performance in this second test 
is still being explored.  In both tests the second 
harmonic of the instability has been essentially 
eliminated. Some peak splitting is evident in this latter 
test. Coupling oscillations with the facility feed pressure 
are shown as very low frequency content in the 
amplitude spectra of the combustor pressure in Fig. 11.  
A direct comparison of the uncontrolled vs the 
controlled instability for this test is shown in Fig. 12.  

Testing that focused on the third harmonic of the 
instability was also carried out during the course of this 
test run. However, based on this testing and from 
frequency sweep tests, very little fuel modulation 
authority of the fuel valve exists at the third harmonic 
which occurs at about 945 Hz. Control of the third 
harmonic was only able to reduce the instability by a 
few psi.  This may be due to limited actuator authority 
at the frequency of the third harmonic. 

The results presented here are preliminary. Due to 
time considerations related to the publishing of this 
paper, detailed analysis of the test results, including 
more precise descriptions of the conditions of the 
controller for these tests, are planned to be published at 
a future date. 

V. Cause of Intra-Harmonic Coupling - 
Hypothesis 

In this section a hypothesis will be offered in an 
attempt to explain the mechanism that causes the 
phenomena of Intra-Harmonic Coupling. This 
explanation is based on phenomena observed during 
testing, and on results from tests involving successful 
suppression of the instability by focusing control on the 
second harmonic. 

During testing, the combustor pressure was 
perturbed both at various discrete frequencies and by 
semi-continuous frequency sweeps. This was done 
mainly in order to assess the modulation authority of 
the fuel valve. In the process of conducting these tests 
some unexpected phenomena were observed. First, the 
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Figure 9.—Pressure Spectra and Time Domain of 
Controlled Instability of LFRC for Control Focus 
on the Second Harmonic. 
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Figure 11.—Pressure Spectra and Time Domain of 
Controlled Instability and Control Command for 
Control Focus on the Second Harmonic. 
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application of a discrete fuel excitation amounting to 
about 3 volts peak at a frequency of about 200 Hz, 
initially caused a barely visible pressure in the 
amplitude spectra. However, as shown in Fig. 14, after 
about 10 minutes of running time, this modulation 
produced combustor pressure oscillations which 
rapidly grew to about 2 psi in the combustor pressure. 
The growth of this discrete modulation seemed to 
interact with the instability, reducing its peak 
somewhat. Discrete excitations at frequency bands 
near the instability frequency of ~ 315 Hz, on either 
side, had a more pronounced effect, causing the 
perturbation to grow significantly, while considerably 
reducing the instability amplitude spectra as shown in 
Fig. 13.  This is not instability suppression per se. 
Rather, the combustor process is susceptible to 
instability at frequencies near the instability, and as a 
result the perturbations introduced through fuel 
modulation entrain the instability energy. Also, as can 
be seen in Fig. 14(b) and Fig. 13, discrete frequency 
excitations seemed to create their own sub-harmonics, 
as well as harmonic frequencies. Overall, this 
combustor process seems to be very conducive to 
dynamic coupling between harmonics and also 
between discrete frequencies. 

It would seem that these types of coupling 
phenomena between harmonics and discrete 
frequencies are primarily caused by some coupling 
asymmetry between these pressure waves in the 
combustor, called here Wave Coupling Asymmetry 
(WCA). Here, the meaning of WCA is that when two 
or more waves interfere, the interference is non-
symmetrical causing a net suppression or 
amplification of the individual waves. Wave 
asymmetry is a phenomena discussed in more depth in 
the field of Oceanography,22 which primarily deals 
with asymmetry in ocean waves. Coupling asymmetry 
and harmonic coupling are often covered in 
Physics23,24 and even in Electrical Engineering,  
(e.g. the coupling asymmetry in the positive sequence 
produced by three phase unbalanced power25). 
Harmonics or waves of different frequencies can still 
interfere with one another. But such interference will 
typically manifest itself as cycle-by-cycle suppression 
or amplification of each wave, depending on whether 
their phases promote amplification or suppression at a 
given instant in time. However, over the course of a 
combined periodic cycle (defined by the largest 
common multiple of the two frequencies), the net 
change in suppression and amplification of each wave 
will be zero. As a result, in an amplitude spectra 
density plot the two waves will seem unaffected, as if  
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Figure 14.—Comparison of Initial Fuel Modulation 
Authority (a) and Authority After About 10 
Minutes (b). 
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Figure 13.—Open-Loop Fuel Pressure Modulations at 
289 Hz Entrain the Energy from the Instability. 

 

Figure 12.—Amplitude Spectra of Uncontrolled vs 
Controlled Instability for Control Focus on the 
Second Harmonic. 
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they do not interfere or couple with one another.  This will generally be the case, unless there is asymmetry (uneven 
coupling) in either the direction of suppression or amplification.   

In the case of the combustor pressure waves; when the phases of the two waves are such that amplification is 
supported, this action is likely opposed by damping in the form of friction (like skin friction with the walls of the 
chamber). This friction damping could be non-linear, with damping increasing as the amplitude of the wave 
increases. On the other hand, when the phases of the two waves are such that it promotes suppression in some 
portion of the overall periodic cycle, the suppression will be uninhibited by damping. Therefore, in such a case there 
will be WCA or unbalance in suppression and amplification which overall favors suppression. However, as 
suppression increases, at some point this asymmetry no longer favors suppression. This is because as the wave 
amplitude diminishes and becomes comparable to the amplitude of the combustor noise, the noise increasingly 
drives the process preventing further suppression. At this point WCA favors amplification. At some point a balance 
is reached, where the two sided WCA reaches an equilibrium point. In an amplitude spectra density plot the two 
waves reach a balance between suppression and amplification, where likely the higher amplitude wave looses some 
net energy and the lower amplitude wave gains some net energy. It is possible that the relative phase between the 
two pressure waves, which promotes amplification of one wave and suppression of the other, automatically adjusts 
in this process driven by a Minimum Energy Systems (MES) effect, whereby the system naturally settles at a 
minimum energy state. This energy or power in a MES will be proportional to a damping quantity analogous to a 
resistance and a squared quantity such as flow. 

Assuming this hypothesis is correct, the question remains as to why controlling the second harmonic has such a 
significant impact in suppressing the fundamental mode. The explanation may also involve the periodicity of the 
combined wave cycle. This effect deals with applying a control action favoring suppression based on the WCA at a 
rate equal to the combined wave cycle frequency of the fundamental and its second harmonic. In this case the 
control rate will be the same frequency as the fundamental. On the other hand, the effectiveness in instability 
suppression when the harmonics are also involved in the control action may also be due to the Intra-Harmonic 
Coupling mechanism itself. That is when suppressing the harmonic(s), the cycling energy transfer between the 
fundamental and its harmonic(s) diminishes, and thus it becomes easier to suppress the fundamental.  

With a more pronounced or coherent instability where the damping is less, the equilibrium level in the WCA will 
likely be higher, that is, less suppression will be possible.  In summary, the combustor noise alone (given the large 
dead time phase delay in the process) doesn’t seem to be the only limiting factor in combustor instability 
suppression of large coherent instabilities. The other limiting factor is likely the instability damping. The 
equilibrium reached by the two-sided WCA, also, based on the effectiveness of the control action, likely dictates the 
final suppression levels of the instability. Further experiments are planned to determine the validity of this 
hypothesis. 

VI. Conclusion 
This paper reports on test results from test runs of a high frequency aero-engine-like combustor rig and a low 

frequency configuration of the rig. The test results validate the effectiveness of an adaptive control method for 
suppressing combustor instabilities in liquid-fueled gas turbines for both high and low frequency. Further, a certain 
characteristic called Intra-Harmonic Coupling, discovered in previous analysis, was exploited to produce even 
higher suppression levels during active control of the instability. This was accomplished by focusing control on the 
second harmonic of the instability. This new control approach that exploits harmonic couplings could lead to a new 
and more effective class of combustor instability controllers. A hypothesis has been offered to explain the 
mechanisms involved in intra-harmonic coupling, which is attributed to a two-sided wave coupling asymmetry and 
possibly a minimum energy systems effect. The phenomena of wave asymmetry has been observed before in other 
disciplines and could open the door for a more in depth understanding of combustor dynamics. Ongoing analysis of 
the test results will provide a better understanding of these effects in order to choose the most effective control 
strategies in an attempt to achieve even better results. Ultimately, the goal of these combustor instability control 
efforts is to extend these control approaches to lean-burning combustors that are enabling technologies for reducing 
NOx emissions from aircraft gas turbine engines. 
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This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic
instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas
turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental
rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented
here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a
well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to
a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn
Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a
lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure
of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called
Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second
harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the
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